Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38629357

RESUMO

BACKGROUND: Surgical site infections are one of the major clinical problems in surgical departments that cost hundreds of millions of dollars to healthcare systems around the world. AIM: The study aimed to address the pressing issue of surgical site infections, which pose significant clinical and financial burdens on healthcare systems globally. Recognizing the substantial costs incurred due to these infections, the research has focused on understanding the role of lipase and protease production by multi-drug resistant bacteria isolated from surgical wounds in the development of post-surgical wound infections. METHODS: For these purposes, 153 pus specimens were collected from patients with severe post-surgical wound infections having prolonged hospital stays. The specimens were inoculated on appropriate culture media. Gram staining and biochemical tests were used for the identification of bacterial growth on suitable culture media after 24 hours of incubation. The isolated pathogens were then applied for lipase and protease, key enzymes that could contribute to wound development, on tributyrin and skimmed milk agar, respectively. Following the CSLI guidelines, the Kirby-Bauer disc diffusion method was used to assess antibiotic susceptibility patterns. The results revealed that a significant proportion of the samples (127 out of 153) showed bacterial growth of Gram-negative (n = 66) and Gram-positive (n = 61) bacteria. In total, isolated 37 subjects were declared MDR due to their resistance to three or more than three antimicrobial agents. The most prevalent bacteria were Staphylococcus aureus (29.13%), followed by S. epidermidis (18.89%), Klebsiella pneumoniae (18.89%), Escherichia coli (14.96%), Pseudomonas aeruginosa (10.23%), and Proteus mirabilis (7.87%). Moreover, a considerable number of these bacteria exhibited lipase and protease activity with 70 bacterial strains as lipase positive on tributyrin agar, whereas 74 bacteria showed protease activity on skimmed milk agar with P. aeruginosa as the highest lipase (69.23%) and protease (76.92%) producer, followed by S. aureus (lipase 62.16% and protease 70.27%). RESULTS: The antimicrobial resistance was evaluated among enzyme producers and non-producers and it was found that the lipase and protease-producing bacteria revealed higher resistance to selected antibiotics than non-producers. Notably, fosfomycin and carbapenem were identified as effective antibiotics against the isolated bacterial strains. However, gram-positive bacteria displayed high resistance to lincomycin and clindamycin, while gram-negative bacteria were more resistant to cefuroxime and gentamicin. CONCLUSION: In conclusion, the findings suggest that lipases and proteases produced by bacteria could contribute to drug resistance and act as virulence factors in the development of surgical site infections. Understanding the role of these enzymes may inform strategies for preventing and managing post-surgical wound infections more effectively.

2.
Heliyon ; 10(7): e29031, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601549

RESUMO

This study aimed to identify efficient Trichoderma isolate(s) for the management of Fusarium wilt in peas. Four different pea germplasms (Sarsabz, Pea-09, Meteor and Supreme) were evaluated for resistance against Fusarium oxysporum in pot assay. Resistant germplasm exhibits a varying range of disease severity (23%) and percent disease index (21%), whereas susceptible and highly susceptible germplasm exhibit maximum disease severity (44-79%) and percent disease index (47-82%). The susceptible germplasm Meteor was selected for in vivo experiment. Five different Trichoderma spp. (Trichoderma koningii, T. hamatum, T. longibrachiatum, T. viride, and T. harzianum) were screened for the production of hydrolytic extracellular enzymes under in vitro. In-vitro biocontrol potential of Trichoderma spp. was assayed by percentage inhibition of dry mass of Fusarium oxysporum pisi (FOP) with Trichoderma spp. metabolite filtrate concentrations. Maximum growth inhibition was observed by T. harzianum (50-89%). T. harzianum metabolites in filtrate conc. (40%, 50%, and 60%) exhibited maximum reduction in biomass and were thus used for in vivo management of the disease. The pot experiment for in-vivo management also confirmed the maximum inhibition of FOP by T. harzianum metabolites filtrate at 60% by reducing disease parameters and enhancing growth, yield, and physiochemical and stress markers. Trichoderma strains led to an increase in chlorophyll and carotenoids (34-26%), Total phenolic 55%, Total protein content 60%, Total Flavonoid content 36%, and the increasing order of enzyme activities were as follows: CAT > POX > PPO > PAL in all treatments. These strains demonstrate excellent bio-control of Fusarium wilt in pea via induction of defense-related enzymes. The present work will help use Trichoderma species in disease management programme as an effective biocontrol agent against plant pathogens.

3.
Heliyon ; 10(7): e28955, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623192

RESUMO

Marine fungi represent an important proportion of the microbial diversity in the oceans. They are attractive candidates for biotechnological purposes and industrial applications. Despite an increasing interest in mycology, marine fungi associated with sponges and algae have been poorly studied in Mauritius. The objectives of this study were to: 1) use multigene phylogenetic analyses to identify isolated marine fungi; 2) determine the differences in the antimicrobial and antioxidant properties of the fungal extracts; and 3) assess their enzyme activities and dye decolorization potential. Five fungal isolates viz Aspergillus chevalieri, Aspergillus iizukae, Aspergillus ochraceus, Exserohilum rostratum and Biatriospora sp. were identified based on phylogenetic analyses. There was no significant difference in the antimicrobial properties of the liquid and solid media extracts unlike the antioxidant properties (p < 0.05). The solid media extract of Aspergillus chevalieri (F2-SF) had a minimum inhibitory concentration of 0.156 mg/ml against Staphylococcus aureus while Aspergillus ochraceus (F25-SF) had a minimum inhibitory concentration of 0.313 and 2.5 mg/ml against Enterococcus faecalis and Salmonella typhi. The solid media extract of Biatriospora sp. (F34-SF) had a minimum inhibitory concentration of 0.195 and 1.563 mg/ml against Bacillus cereus, Escherichia coli and Enterobacter cloacae. An IC50 of 78.92 ± 4.71 µg/ml in the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging assay, ferric reducing antioxidant power (FRAP) value of 11.17 ± 0.20 mM Fe2+/g dry weight extract (DWE) and total phenolic content 360.35 ± 10.31 mg GAE/g DWE was obtained with the solid media extract of Aspergillus chevalieri (F2-SF). Aspergillus ochraceus (F25-SF) and Biatriospora sp. (F34-SF) solid media extracts showed lower IC50 values in the DPPH assay and higher total phenolic content as compared to the liquid media extracts. Aspergillus chevalieri was a good producer of the enzymes DNAse and lipase and had maximum percentage dye decolorization of 79.40 ± 17.72% on Congo red. An enzymatic index ≥ 2 was found for the DNAse and lipase and the maximum percentage dye decolorization of 87.18 ± 3.80% was observed with Aspergillus ochraceus on Methylene blue. Regarding Biatriospora sp., it was a moderate producer of the three enzymes amylase, DNAse and protease and had a maximum dye decolorization potential of 56.29 ± 6.51% on Crystal violet. This study demonstrates that Mauritian marine fungi possess good bioactive properties, enzymatic and dye decolorization potentials, that can potentially be considered for use in pharmaceutical and industrial applications.

4.
Reprod Domest Anim ; 59(4): e14557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613191

RESUMO

Limited literature is available on the consequences of postpartum low blood calcium (Ca) concentration in crossbred cows. The research aimed to investigate the correlation between postpartum serum Ca levels and various parameters, including milk yield, serum energy metabolites, milk somatic cell count, and reproductive factors in crossbred cows. Following parturition, a total of 45 potential high-yielding F2 (HF × Sahiwal; Genotype: 75:25) dairy cows were enrolled . These cows were categorized based on plasma calcium concentrations into three groups: a low calcium group (Ca-L) with a calcium concentration of <5 mg/dL, a medium calcium group (Ca-M) with a calcium concentration ranging from 5 to 8.5 mg/dL, and a high calcium group (Ca-H) with a calcium concentration exceeding 8.5 mg/dL. The study parameters were measured over an 8-week period. The results indicated that overall milk yield and blood glucose were significantly higher in the Ca-H group compared to Ca-M and Ca-L (p < .01). Blood cholesterol was significantly higher in Ca-M (p < .01), while blood triglyceride was significantly lower in both Ca-M and Ca-H. Overall, blood cortisol did not show a significant change between these groups (p < .01); however, progesterone levels were higher (p < .01) in Ca-M and Ca-H cows. Furthermore, somatic cell count (SCC) significantly (p < .01) decreased in cows with Ca-H compared to Ca-L. Additionally, postpartum oestrous interval and interestrus interval decreased significantly (p < .01) in Ca-M and Ca-H compared to Ca-L. These findings suggest that cows with blood calcium levels exceeding 8.5 mg/dL exhibited significantly higher milk yield, blood metabolite levels, a lower likelihood of subclinical mastitis, and earlier reproductive activity after calving.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Feminino , Bovinos , Animais , Gravidez , Cálcio , Leite , Testes Hematológicos/veterinária
5.
Plants (Basel) ; 13(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38475561

RESUMO

The current study was carried out to screen 10 isolates (ARS-01-ARS-10) of Rhizoctonia. solani from potato tubers cv. Kuroda, which were collected from various potato fields in Multan, Pakistan. The isolates were found to be morphologically identical, as the hyphae exhibit the production of branches at right angles and acute angles often accompanied by septum near the emerging branches. Anastomosis grouping showed that these isolates belonged to AG-3. A pathogenicity test was performed against the susceptible Kuroda variety and among the isolates, ARS-05 exhibited the highest mean severity score of approximately 5.43, followed by ARS-09, which showed a mean severity score of about 3.67, indicating a moderate level of severity. On the lower end of the severity scale, isolates ARS-06 and ARS-07 displayed mean severity scores of approximately 0.53 and 0.57, respectively, suggesting minimal symptom severity. These mean severity scores offer insights into the varying degrees of symptom expression among the different isolates of R. solani under examination. PCoA indicates that the severe isolate causing black scurf on the Kuroda variety was AG-3. A comprehensive analysis of the distribution, genetic variability, and phylogenetic relationships of R. solani anastomosis groups (AGs) related to potato crops across diverse geographic regions was also performed to examine AG prevalence in various countries. AG-3 was identified as the most widespread group, prevalent in Sweden, China, and the USA. AG-5 showed prominence in Sweden and the USA, while AG-2-1 exhibited prevalence in China and Japan. The phylogenetic analysis unveiled two different clades: Clade I comprising AG-3 and Clade II encompassing AG-2, AG-4, and AG-5, further subdivided into three subclades. Although AGs clustered together regardless of origin, their genetic diversity revealed complex evolutionary patterns. The findings pave the way for region-specific disease management strategies to combat R. solani's impact on potato crops.

7.
Toxics ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38393205

RESUMO

Land use has a great impact on soil dynamics. The soils of various land use systems in Central Karakoram have been under immense pressure in the recent past due to certain anthropogenic activities such as land use practices and land use cover changes. These influences have an impact on the spatial distribution of metallic elements (MEs) in the soils of various land uses. Herein, we investigated the occurrence of the MEs, copper (Cu), zinc (Zn), and nickel (Ni), in soils of various land uses such as the permafrost, pasture, forest, and agricultural lands of the Central Karakorum region. The MEs were extracted in exchangeable, adsorbed, organically bound, carbonated, precipitated, and residual forms. The concentrations of MEs showed a significant dependence on the extraction method used, and the extraction trend followed the order of EDTA > HNO3 > KNO3 > NaOH > H2O. Zn showed the highest concentration compared to Ni and Cu in all extractions, whereas the land uses' ME concentration followed the order of agricultural land > permafrost > forest > pasturelands. The highest values of total Zn, Ni, and Cu were 712 ± 01 mg/kg, 656 ± 02 mg/kg, and 163 ± 02 mg/kg, respectively, in agricultural soil. The ME concentration showed significant variations between different land uses, and the highest concentration was noted in agricultural soil. Zn was found to be a dominant ME compared to Ni and Cu. We believe this effort will provide opportunities for scholars to investigate MEs around the globe.

8.
Vet Q ; 44(1): 1-7, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38423073

RESUMO

The study investigated the impact of incorporating a specific herbal blend comprising coriander, garlic, and fenugreek (CGF) at various levels on the zootechnical performance, blood metabolites and nutrient digestibility in broiler chickens. The 42-day experiment involved 360 broilers (Cobb 500), organized into four distinct treatment groups. The dietary interventions included a control group consisting of a basal diet and the same diet was supplemented with CGF at rates of 1, 2, and 3%. Broilers receiving a 1% phytogenic mixture exhibited significantly increased live weight and carcass weight. Moreover, the digestibility of crude protein and crude fat significantly improved in broilers supplemented with a 1% phytogenic mixture. On the other hand, the digestibility of calcium and phosphorus showed a notable increase in broilers fed with a 3% phytogenic mixture. Regarding serum metabolites, the 1% phytogenic mixture group displayed significantly higher levels of high density lipoprotein and triglycerides. The supplementation of the broiler diet with a herbal mixture of coriander, fenugreek, and garlic at a 1% rate resulted in improved growth performance, carcass quality, nutrient digestion, and lipid profile.


Assuntos
Coriandrum , Alho , Trigonella , Animais , Galinhas , Nutrientes
9.
Sci Rep ; 14(1): 2375, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287143

RESUMO

Potato (Solanum tuberosum) is the third crucial global crop facing threats from Alternaria solani, a necrotrophic fungal pathogen causing early blight disease. Beyond crop impact, it leads to substantial production reduction and economic losses worldwide. This study introduces a green synthesis method for producing Ferric Oxide nanoparticles (FNPs) using dried Guava (Psidium guajava) leaves. Guava leaf extract acts as a reducing agent, with iron (III) chloride hexahydrate (FeCl3·6H2O) as the oxidizing agent. This study employed various characterization techniques for Ferric Oxide nanoparticles (FNPs). Fourier Transform Infrared Spectroscopy (FTIR) revealed peaks at 877 cm-1, 1180 cm-1, 1630 cm-1, 1833 cm-1, 2344 cm-1, and 3614 cm-1, associated with Maghemite vibrations, polyphenol compounds, and amino acids. UV-Vis spectroscopy exhibited a characteristic absorbance peak at 252 nm for FNPs. Scanning Electron Microscope (SEM) images illustrated particle sizes of 29-41 nm, and Energy Dispersive Spectroscopy (EDS) indicated elemental composition. X-ray diffraction (XRD) confirmed crystalline FNPs with peaks at 26.78, 30.64, 36.06, 38.21, 43.64, 53.52, 57.42, 63.14 and 78.32. Disease resistance assays demonstrated FNPs' effectiveness against A. solani, reducing disease incidence and severity. In the leaf detach assay, concentrations of 15, 10 and 5 mg/L showed a dose-dependent reduction in disease severity and incidence. The Greenhouse Assay confirmed FNPs' concentration-dependent effect on disease incidence and severity. The study also explored FNPs' potential as biocontrol agents showing no adverse effects on overall plant development. Additionally, the study highlighted the agronomic potential of FNPs in enhancing plant growth and development emphasizing their role as micronutrients in biofortification. The findings suggest the promising application of FNPs in plant protection and biofortification strategies.


Assuntos
Alternaria , Nanopartículas Metálicas , Nanopartículas , Solanum tuberosum , Nanopartículas/química , Compostos Férricos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Extratos Vegetais/química , Difração de Raios X , Antibacterianos/química
10.
Chemosphere ; 349: 140860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052312

RESUMO

Phenanthrene is a persistent organic pollutant released by numerous industries. The purpose of the study is to construct a batch reactor for phenanthrene degradation using a bimetallic (BM) ZnS-SnS nanoparticle as a photocatalyst. ZnS-SnS BM NPs were used as a photocatalyst, employed from precursors Zinc acetate dihydrate and tin (II) chloride dihydrate, with crystalline cubic-shaped particle sizes. ZnS-SnS BM NPs were utilized in batch adsorption assays to assess the impact of phenanthrene degradation parameters on various PAHs (Polycyclic aromatic hydrocarbons) concentrations, pH levels, and irradiation sources. Adsorption kinetic and isotherm tests revealed that the pseudo-first order kinetic model, pseudo-second order kinetic model, and Langmuir isotherm model all fit effectively with the effective phenanthrene degradation using ZnS-SnS BM NPs. The degraded product were analyzed for GC-MS, revealing that organic pollutant phenanthrene was converted into harmless by-products like n-hexadecenoic acid, oleic acid, and octadecanoic acid. The toxicity of phenanthrene was observed to decrease with an increase in ZnS-SnS BM NPs concentration. ZnS-SnS BM NP concentration of 150 µg/mL, the zone of inhibition values was recorded highest zone of inhibition (19 ± 1.2 mm) against the strains S. epidermis followed by B. cereus and Clostridium spp. Further adult zebrafish were found to be less toxic to ZnS-SnS BM NPs after 96 h of exposure, with an LD50 of 100 µg/L. The toxicity escalated as concentrations increased. Behavior test showed normal swimming, learning, and memory in open tank and T-maze tests, while 100 µg/L showed pausing/frozen time in zebra fish therefore low doses are considered safe. Hence by employing ZnS-SnS BM NPs can be engaged in waste water treatment for PAH degradation.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Peixe-Zebra , Adsorção , Fenantrenos/toxicidade , Fenantrenos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
11.
Curr Pharm Des ; 29(41): 3324-3339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111115

RESUMO

INTRODUCTION: In the present study, we aimed to investigate the extraction and identification of the potential phytochemicals from the Methanolic Extract of Dryopteris ramosa (MEDR) using GC-MS profiling for validating the traditional uses of MEDR its efficacy in inflammations by using in-vitro, in-vivo and in silico approaches in anti-inflammatory models. METHODS: GC-MS analysis confirmed the presence of a total of 59 phytochemical compounds. The human red blood cells (HRBC) membrane stabilization assay and heat-induced hemolysis method were used as in-vitro anti-inflammatory activity of the extract. The in-vivo analysis was carried out through the Xylene-induced mice ear oedema method. It was found that MEDR at a concentration of 20 µg, 30 µg, and 40 µg showed 35.45%, 36.01%, and 36.33% protection to HRBC in a hypotonic solution, respectively. At the same time, standard Diclofenac at 30 µg showed 45.31% protection of HRBC in a hypotonic solution. RESULTS: The extract showed inhibition of 25.32%, 26.53%, and 33.31% cell membrane lysis at heating at 20 µg, 30 µg, and 40 µg, respectively. In comparison, standard Diclofenac at 30 µg showed 50.49% inhibition of denaturation to heat. Methanolic extract of the plant exhibited momentous inhibition in xylene-induced ear oedema in mice treated with 30 µg extract were 47.2%, 63.4%, and 78.8%, while inhibition in mice ear oedema treated with 60 µg extract was 34.7%, 43.05%, 63.21% and reduction in ear thickness of standard drug were 57.3%, 59.54%, 60.42% recorded at the duration of 1, 4 and 24 hours of inflammation. Molecular docking and simulations were performed to validate the anti-inflammatory role of the phytochemicals that revealed five potential phytochemicals i.e. Stigmasterol,22,23dihydro, Heptadecane,8methyl, Pimaricacid, Germacrene and 1,3Cyclohexadiene,_5(1,5dimethyl4hexenyl)-2methyl which revealed potential or significant inhibitory effects on cyclooxygenase-2 (COX-2), tumour necrosis factor (TNF-α), and interleukin (IL-6) in the docking analysis. CONCLUSION: The outcome of the study signifies that MEDR can offer a new prospect in the discovery of a harmonizing and alternative therapy for inflammatory disease conditions.


Assuntos
Dryopteris , Camundongos , Humanos , Animais , Xilenos/efeitos adversos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Diclofenaco/efeitos adversos , Soluções Hipotônicas/efeitos adversos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Metanol/efeitos adversos , Fator de Necrose Tumoral alfa
12.
Animals (Basel) ; 13(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136827

RESUMO

Coccidiosis stands as one of the most prevalent enteric parasitic diseases in broilers. While antibiotics have traditionally been used for the control of coccidiosis, concerns related to drug residues and the emergence of resistance in chickens have prompted consumer apprehensions. In this study, 600 Ross 308 broiler chicks were randomly divided into five groups: a control group without specific treatments (NC), broilers deliberately exposed to Eimeria tenella (positive control), broilers challenged with E. tenella but dosed with antibiotics (AT), and two groups experimentally exposed to E. tenella while simultaneously receiving pomegranate peel powder (PPE) at dosages of 3 g/kg (3PPP) and 6 g/kg (6PPP). The results revealed that all Eimeria-treated birds exhibited significantly worse growth performance compared to the NC. Notably, a marked improvement was observed in birds infected with E. tenella when supplemented with 6PPP. Both 3PPP and 6PPP supplementation significantly reduced lesion scores, mortality, and oocysts per gram (OPG). Furthermore, histological examination of the cecum indicated that the villus dimensions were restored by PPP supplementation in infected birds. In conclusion, Eimeria-infected birds supplemented with 6PPP experienced an enhanced growth rate, lowered lesion scores, alleviated oocyst shedding, and improved intestinal histological dimensions.

13.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38139804

RESUMO

BACKGROUND: Diabetes mellitus (DM) is a non-communicable, life-threatening syndrome that is present all over the world. The use of eco-friendly, cost-effective, and green-synthesised nanoparticles as a medicinal therapy in the treatment of DM is an attractive option. OBJECTIVE: In the present study, silver nanoparticles (AI-AgNPs) were biosynthesized through the green synthesis method using Azadirachta indica seed extract to evaluate their anti-diabetic potentials. METHODS: These nanoparticles were characterized by using UV-visible spectroscopy, Fourier transform infrared spectrophotometers (FTIR), scanning electron microscopy (SEM), DLS, and X-ray diffraction (XRD). The biosynthesized AI-AgNPs and crude extracts of Azadirachta indica seeds were evaluated for anti-diabetic potentials using glucose adsorption assays, glucose uptake by yeast cells assays, and alpha-amylase inhibitory assays. RESULTS: Al-AgNPs showed the highest activity (75 ± 1.528%), while crude extract showed (63 ± 2.5%) glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the highest activity of Al-AgNPs was 10.65 ± 1.58%, while crude extract showed 8.32 ± 0.258% at 30 mM, whereas in the alpha-amylase assay, Al-AgNPs exhibited the maximum activity of 73.85 ± 1.114% and crude extract 65.85 ± 2.101% at 100 µg/mL. The assay results of AI-AgNPs and crude showed substantial dose-dependent activities. Further, anti-diabetic potentials were also investigated in streptozotocin-induced diabetic mice. Mice were administered with AI-AgNPs (10 to 40 mg/kg b.w) for 30 days. CONCLUSIONS: The results showed a considerable drop in blood sugar levels, including pancreatic and liver cell regeneration, demonstrating that AI-AgNPs have strong anti-diabetic potential.

14.
MycoKeys ; 100: 171-204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098977

RESUMO

Tetraplosphaeriaceae (Pleosporales, Ascomycota) is a family with many saprobes recorded from various hosts, especially bamboo and grasses. During a taxonomic investigation of microfungi in tropical and subtropical forest regions of Guizhou, Hainan and Yunnan provinces, China, several plant samples were collected and examined for fungi. Four newly discovered species are described based on morphology and evolutionary relationships with their allies inferred from phylogenetic analyses derived from a combined dataset of LSU, ITS, SSU, and tub2 DNA sequence data. Detailed illustrations, descriptions and taxonomic notes are provided for each species. The four new species of Tetraplosphaeriaceae reported herein are Polyplosphaeriaguizhouensis, Polyplosphaeriahainanensis, Pseudotetraploayunnanensis, and Tetraploahainanensis. A checklist of Tetraplosphaeriaceae species with available details on their ecology is also provided.

15.
Metabolites ; 13(11)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37999244

RESUMO

Salicylic acid (SA), benzothiadiazole (BTH), and methyl jasmonate (MeJA) are potential elicitors found in plants, playing a crucial role against various biotic and abiotic stresses. The systemic acquired resistance (SAR) mechanism was evaluated in cotton plants for the suppression of Cotton leaf curl Multan Virus (CLCuMuV) by the exogenous application of different elicitors. Seven different treatments of SA, MeJA, and BTH were applied exogenously at different concentrations and combinations. In response to elicitors treatment, enzymatic activities such as SOD, POD, CAT, PPO, PAL, ß-1,3 glucanse, and chitinase as biochemical markers for resistance were determined from virus-inoculated and uninoculated cotton plants of susceptible and tolerant varieties, respectively. CLCuMuV was inoculated on cotton plants by whitefly (Bemesia tabaci biotype Asia II-1) and detected by PCR using specific primers for the coat protein region and the Cotton leaf curl betasatellite (CLCuMuBV)-associated component of CLCuMuV. The development of disease symptoms was observed and recorded on treated and control plants. The results revealed that BTH applied at a concentration of 1.1 mM appeared to be the most effective treatment for suppressing CLCuMuV disease in both varieties. The enzymatic activities in both varieties were not significantly different, and the disease was almost equally suppressed in BTH-treated cotton plants following virus inoculation. The beta satellite and coat protein regions of CLCuMuV were not detected by PCR in the cotton plants treated with BTH at either concentration. Among all elicitors, 1.1 mM BTH was proven to be the best option for inducing resistance after the onset of CLCuMuV infection and hence it could be part of the integrated disease management program against Cotton leaf curl virus.

16.
Front Public Health ; 11: 1277182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026331

RESUMO

In recent decades, heavy metals (HMs) have emerged as a global health concern. Unfortunately, in Pakistan, there is a general lack of awareness regarding the potential health risks associated with HMs pollution among automobile workers. Herein, we investigated the concentration of heavy metals such as lead (Pb), cadmium (Cd), and chromium (Cr) among automobile workers who were occupationally exposed in Mingora City, Khyber Pakhtunkhwa, Pakistan. Three different automobile groups, i.e., battery recyclers, spray painters, and mechanics were studied in detail. A total of 40 blood samples were collected from automobile workers groups while 10 blood samples were collected as control individuals from different locations in the study area. We investigated heavy metals concentration with a standard method using an atomic absorption spectrometer AAS (PerkinElmer Analyst 700, United States). Based on our findings, the battery recycling group displayed the most elevated Pb levels (5.45 ± 2.11 µg/dL), exceeding those of both the spray painters' group (5.12 ± 1.98 µg/dL) and the mechanics' group (3.79 ± 2.21 µg/dL). This can be attributed to their higher exposure to Pb pollution resulting from the deterioration, dismantling, grinding, or crushing of old batteries. In the context of chromium (Cr) exposure, a similar trend was observed among the battery recycling group, as well as the spray painters and mechanics groups. However, in the case of cadmium (Cd), the mechanics' group exhibited the highest level of exposure (4.45 ± 0.65 µg/dL), surpassing the battery recycling group (1.17 ± 0.45 µg/dL) and the spray painters' group (1.35 ± 0.69 µg/dL), which was attributed to their greater exposure to welding fumes and other activities in their workplace. We believe that our findings will encourage regulatory measures to improve the health of automobile workers. However, further work is needed to determine various health-related issues associated with heavy metal exposure among automobile workers.


Assuntos
Metais Pesados , Exposição Ocupacional , Humanos , Cádmio , Chumbo , Exposição Ocupacional/análise , Metais Pesados/análise , Cromo/análise
17.
Microorganisms ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894202

RESUMO

Nanoparticles have emerged as a prominent area of research in recent times, and silver nanoparticles (AgNPs) synthesized via phyco-technology have gained significant attention due to their potential therapeutic applications. Nodularia haraviana, a unique and lesser-explored cyanobacterial strain, holds substantial promise as a novel candidate for synthesizing nanoparticles. This noticeable research gap underscores the novelty and untapped potential of Nodularia haraviana in applied nanotechnology. A range of analytical techniques, including UV-vis spectral analysis, dynamic light scattering spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction, were used to investigate and characterize the AgNPs. Successful synthesis of AgNPs was confirmed through UV-visible spectroscopy, which showed a surface plasmon resonance peak at 428 nm. The crystalline size of AgNPs was 24.1 nm. Dynamic light scattering analysis revealed that silver oxide nanoparticles had 179.3 nm diameters and a negative surface charge of -18 mV. Comprehensive in vitro pharmacogenetic properties revealed that AgNPs have significant therapeutic potential. The antimicrobial properties of AgNPs were evaluated by determining the minimum inhibitory concentration against various microbial strains. Dose-dependent cytotoxicity assays were performed on Leishmanial promastigotes (IC50: 18.71 µgmL-1), amastigotes (IC50: 38.6 µgmL-1), and brine shrimps (IC50: 134.1 µg mL-1) using various concentrations of AgNPs. The findings of this study revealed that AgNPs had significant antioxidant results (DPPH: 57.5%, TRP: 55.4%, TAC: 61%) and enzyme inhibition potential against protein kinase (ZOI: 17.11 mm) and alpha-amylase (25.3%). Furthermore, biocompatibility tests were performed against macrophages (IC50: >395 µg mL-1) and human RBCs (IC50: 2124 µg mL-1). This study showed that phyco-synthesized AgNPs were less toxic and could be used in multiple biological applications, including drug design and in the pharmaceutical and biomedical industries. This study offers valuable insights and paves the way for further advancements in AgNPs research.

18.
Plants (Basel) ; 12(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896115

RESUMO

The primary objective of this study was to determine the heavy metal contents in the water-soil-coriander samples in an industrial wastewater irrigated area and to assess the health risks of these metals to consumers. Sampling was done from areas adjoining the Chistian sugar mill district Sargodha and two separate sites irrigated with groundwater (Site 1), and sugar mill effluents (Site 2) were checked for possible metal contamination. The water-soil-coriander continuum was tested for the presence of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Ni), lead (Pb), and zinc (Zn). The mean concentrations of all metals were higher than the permissible limits for all studied metals except for Mn in the sugar mill wastewater, with Fe (8.861 mg/L) and Zn (9.761 mg/L) exhibiting the highest values. The mean levels of Fe (4.023 mg/kg), Cd (2.101 mg/kg), Cr (2.135 mg/kg), Cu (2.180 mg/kg), and Ni (1.523 mg/kg) were high in the soil at Site 2 in comparison to the groundwater irrigated site where Fe (3.232 mg/kg) and Cd (1.845 mg/kg) manifested high elemental levels. For coriander specimens, only Cd had a higher mean level in both the groundwater (1.245 mg/kg) and the sugar mill wastewater (1.245 mg/kg) irrigated sites. An estimation of the pollution indices yielded a high risk from Cd (health risk index (HRI): 173.2), Zn (HRI: 7.012), Mn (HRI: 6.276), Fe (HRI: 1.709), Cu (HRI: 1.282), and Ni (HRI: 1.009), as all values are above 1.0 indicating a hazard to human health from consuming coriander irrigated with wastewater. Regular monitoring of vegetables irrigated with wastewater is strongly advised to reduce health hazards to people.

19.
Chemosphere ; 343: 140075, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678601

RESUMO

In this study, a trimetallic nanocomposite comprising Silver Copper-Nickel (Ag-Cu-Ni TNC) was synthesized and analysed for its efficiency in degrading benzene and benzopyrene, which has five fused benzene rings. Fabrication of trimetallic nanocomposites were characterized using UV spectroscopy, FTIR studies, SEM EDAX, and DLS results. XRD confirmed the cubic crystalline Fcc structure of Ag-Cu-Ni TNC. Photocatalytic degradation analysis revealed that Ag-Cu-Ni TNC has the efficient photocatalytic ability, and the optimum condition required for efficient degradation of benzene and benzopyrene was identified as 2 µg/mL of PAH molecule, 10 µg/mL of Ag-Cu-Ni TNC at pH 5, stirring time of 2 h placed under UV light. Based on these optimum conditions, kinetic and isotherm studies were performed, revealing that the adsorption of benzene and benzopyrene by Ag-Cu-Ni TNC fits well with the Pseudo-second order kinetic model and Freundlich isotherm model. Thus, our study's adsorption of PAH molecule from aqueous solution takes place through chemisorption and involves heterogeneous adsorption phenomena.

20.
Front Plant Sci ; 14: 1232271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727857

RESUMO

The excessive use of chemical fertilizers is deteriorating both the environment and soil, making it a big challenge faced by sustainable agriculture. To assist the efforts for the solution of this burning issue, nine different potential native strains of plant growth-promoting bacteria (PGPB) namely, SA-1(Bacillus subtilis), SA-5 (Stenotrophomonas humi),SA-7(Azospirillum brasilense), BH-1(Azospirillum oryzae), BH-7(Azotobacter armeniacus), BH-8(Rhizobium pusense), BA-3(Azospirillum zeae), BA-6(Rhizobium pusense), and BA-7(Pseudomonas fragi) were isolated that were characterized morphologically, biochemically and molecularly on the basis of 16S rRNA sequencing. Furthermore, the capability of indigenous PGPB in wheat (Triticum aestivum, Chakwal-50) under control, DAP+FYM, SA-1,5,7, BH-1,7,8, BA-3,6,7, DAP+ FYM + SA-1,5,7, DAP+FYM+ BH-1,7,8 and DAP+FYM+ BA-3,6,7 treatments was assessed in a randomized complete block design (RCBD). The results of the study showed that there was a significant increase in plant growth, nutrients, quality parameters, crop yield, and soil nutrients at three depths under SA-1,5,7, BH-1,7,8, and BA-3,6,7 in combination with DAP+FYM. Out of all these treatments, DAP+ FYM + BA-3,6,7 was found to be the most efficient for wheat growth having the highest 1000-grain weight of 55.1 g. The highest values for plant height, no. of grains/spike, spike length, shoot length, root length, shoot dry weight, root dry weight, 1000 grain weight, biological yield, and economic yield were found to be 90.7 cm, 87.7 cm, 7.20 cm, 53.5 cm, 33.5 cm, 4.87 g, 1.32 g, 55.1 g, 8209 kg/h, and 4572 kg/h, respectively, in the DAP+FYM+BA treatment. The DAP+FYM+BA treatment had the highest values of TN (1.68 µg/mL), P (0.38%), and K (1.33%). Likewise, the value of mean protein (10.5%), carbohydrate (75%), lipid (2.5%), and available P (4.68 ppm) was also highest in the DAP+FYM+BA combination. C:P was found to be significantly highest (20.7) in BA alone but was significantly lowest (11.9) in DAP+FYM+BA. Hence, the integration of strains BA-3, BA-5, and BA-7 in fertilizers can be regarded as the most suitable choice for agricultural growth in the sub-mountainous lower region of AJK. This could serve as the best choice for sustainable wheat growth and improved soil fertility with lesser impacts on the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...